Regulation of ribonuclease E activity by the L4 ribosomal protein of Escherichia coli.

نویسندگان

  • Dharam Singh
  • Ssu-Jean Chang
  • Pei-Hsun Lin
  • Olga V Averina
  • Vladimir R Kaberdin
  • Sue Lin-Chao
چکیده

Whereas ribosomal proteins (r-proteins) are known primarily as components of the translational machinery, certain of these r-proteins have been found to also have extraribosomal functions. Here we report the novel ability of an r-protein, L4, to regulate RNA degradation in Escherichia coli. We show by affinity purification, immunoprecipitation analysis, and E. coli two-hybrid screening that L4 interacts with a site outside of the catalytic domain of RNase E to regulate the endoribonucleolytic functions of the enzyme, thus inhibiting RNase E-specific cleavage in vitro, stabilizing mRNAs targeted by RNase E in vivo, and controlling plasmid DNA replication by stabilizing an antisense regulatory RNA normally attacked by RNase E. Broader effects of the L4-RNase E interaction on E. coli transcripts were shown by DNA microarray analysis, which revealed changes in the abundance of 65 mRNAs encoding the stress response proteins HslO, Lon, CstA, YjiY, and YaeL, as well as proteins involved in carbohydrate and amino acid metabolism and transport, transcription/translation, and DNA/RNA synthesis. Analysis of mRNA stability showed that the half lives of stress-responsive transcripts were increased by ectopic expression of L4, which normally increases along with other r-proteins in E. coli under stress conditions, and also by inactivation of RNase E. Our finding that L4 can inhibit RNase E-dependent decay may account at least in part for the elevated production of stress-induced proteins during bacterial adaptation to adverse environments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of New Genetic Tools as Alternatives for Protein Overexpression in Escherichia coli and Pseudomonas aeruginosa

Background: Pseudomonas protein expression in E. coli is known to be a setback due to signifi cant genetic variation and absence of several genetic elements in E. coli for regulation and activation of Pseudomonas proteins. Modifi cations in promoter/repressor system and shuttle plasmid maintenance have made the expression of stable and active Pseudomonas protein possible in bot...

متن کامل

Phylogenetic analysis of L4-mediated autogenous control of the S10 ribosomal protein operon.

We investigated the regulation of the S10 ribosomal protein (r-protein) operon among members of the gamma subdivision of the proteobacteria, which includes Escherichia coli. In E. coli, this 11-gene operon is autogenously controlled by r-protein L4. This regulation requires specific determinants within the untranslated leader of the mRNA. Secondary structure analysis of the S10 leaders of five ...

متن کامل

YmdB: a stress-responsive ribonuclease-binding regulator of E. coli RNase III activity.

The broad cellular actions of RNase III family enzymes include ribosomal RNA (rRNA) processing, mRNA decay, and the generation of noncoding microRNAs in both prokaryotes and eukaryotes. Here we report that YmdB, an evolutionarily conserved 18.8-kDa protein of Escherichia coli of previously unknown function, is a regulator of RNase III cleavages. We show that YmdB functions by interacting with a...

متن کامل

High Level Expression of Recombinant Ribosomal Protein (L7/L12) from Brucella abortus and Its Reaction with Infected Human Sera

Brucellosis, caused by Brucella spp., is an important zoonotic disease that causes abortion and infertility in cattle and undulant fever in humans. Various studies have examined cell-free native and recombinant proteins as candidate protective antigens in animal models. Among Brucella immunogenes, antigen based on ribosomal preparation has been widely investigated. In this study, the immunogeni...

متن کامل

Ribosomal protein L4 and transcription factor NusA have separable roles in mediating terminating of transcription within the leader of the S10 operon of Escherichia coli.

Ribosomal protein L4 of Escherichia coli autogenously regulates both transcription and translation of the 11-gene S10 operon. Transcription regulation occurs by L4-stimulated premature termination at an attenuator hairpin in the S10 leader. This effect can be reproduced in vitro but depends on the addition of transcription factor NusA. We show that NusA is required to promote RNA polymerase pau...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 3  شماره 

صفحات  -

تاریخ انتشار 2009